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Abstract

In the rapidly evolving domain of Natural
Language Generation (NLG) evaluation, intro-
ducing Large Language Models (LLMs) has
opened new avenues for assessing generated
content quality, e.g., coherence, creativity, and
context relevance. This paper aims to provide
a thorough overview of leveraging LLMs for
NLG evaluation, a burgeoning area that lacks a
systematic analysis. We propose a coherent tax-
onomy for organizing existing LLM-based eval-
uation metrics, offering a structured framework
to understand and compare these methods. Our
detailed exploration includes critically assess-
ing various LLM-based methodologies, as well
as comparing their strengths and limitations in
evaluating NLG outputs. By discussing unre-
solved challenges, including bias, robustness,
domain-specificity, and unified evaluation, this
paper seeks to offer insights to researchers and
advocate for fairer and more advanced NLG
evaluation techniques.

1 Introduction

Natural Language Generation (NLG) stands at
the forefront of modern Al-driven communica-
tion, with recent advancements in large language
models (LLMs) revolutionizing the capabilities
of NLG systems (Ouyang et al., 2022; OpenAl,
2023). These models, powered by deep learning
techniques and vast amounts of training data, ex-
hibit excellent proficiency in generating text across
a wide range of applications. As NLG technol-
ogy continues its rapid evolution, it becomes in-
creasingly imperative to establish robust evaluation
methodologies that can reliably gauge the quality
of the generated content.

Traditional NLG evaluation metrics, such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004)
and TER (Snover et al., 2006), primarily focus on
surface-level text differences and often fall short
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Figure 1: Illustration of LLMs for NLG evaluation. The
dashed line means that the references and sources are
optional based on the scenarios.

in assessing semantic aspects (Freitag et al., 2020).
This limitation has been noted to hinder research
progress and can lead to misleading research con-
clusions. Additionally, other methods that employ
neural embeddings to calculate the score (Liu et al.,
2016; Sellam et al., 2020; Zhang et al., 2020), de-
spite assessing aspects like semantic equivalence
and fluency, are inflexible and limited in scope (Fre-
itag et al., 2021a). Additionally, these traditional
methods tend to have low alignment with human
judgement (Liu et al., 2023c) and lack interpretabil-
ity for the score (Xu et al., 2023). These drawbacks
underscore the need for more nuanced and compre-
hensive evaluation methods in the NLG field.

The emergent abilities of LLMs present a
promising avenue for the LLM-based NLG eval-
uation, such as Chain-of-Thought (CoT) (Wei
et al., 2022b), zero-shot instruction following (Wei
et al., 2022a), better alignment with human prefer-
ence (Ouyang et al., 2022), etc. These attributes
position LLMs as potent tools for evaluating NLG
outputs, offering a more sophisticated and better
human-aligned assessment compared to traditional
methods (Liu et al., 2023c; Kocmi and Federmann,
2023; Fu et al., 2023). For instance, LLMs could
generate reasonable explanations to support the ulti-
mate score (Xu et al., 2023), and the reinforcement
learning with human feedback (RLHF) could align



LLMs’ preference with human better (Ouyang
et al., 2022; Zheng et al., 2023). As in Figure 1,
the key strategy in these approaches involves in-
structing LLMs with prompts to evaluate generated
texts from various aspects, either with references
and sources or not. However, the wide array of
LLM-based NLG evaluation methods, addressing
different tasks and goals, lack a unified overview.

Given the burgeoning volume of work in the
realm of LLMs for NLG evaluation, a synthesized
summary is urgently needed to navigate the com-
plexities and diverse methodologies within this
space. This survey aims to provide a comprehen-
sive overview of this promising domain, presenting
a coherent taxonomy for organizing existing works.
We meticulously delineate pivotal studies and their
methodologies, and delve into an analytical dis-
cussion of the various strengths, limitations, and
distinctive attributes of these approaches. Further-
more, we navigate through the yet-to-be-resolved
challenges and the open-ended questions within
this field, thereby charting potential avenues for
future scholarly exploration. This comprehensive
exploration aims to spark readers with an in-depth
understanding of the nuances and evolving dynam-
ics of LLM-based approaches in NLG evaluation.

Organization of this paper: We present the
first comprehensive survey of recent advancements
in leveraging LLMs for NLG evaluation. Initially,
we establish a formal framework for NLG evalua-
tion and propose a taxonomy to categorize relevant
works (Section 2). Subsequently, we delve into
and elaborate on these works in detail (Section 3).
Furthermore, we conduct a systematic review of
various meta-evaluation benchmarks that assess the
efficacy of LLM-based evaluators (Section 4). Ad-
ditionally, we provide a thorough comparison of
LLM-based evaluators with traditional evaluators
in terms of performance, efficiency and qualitative
qualitative analysis (Section 5). In recognition of
the rapid evolution of this field, we identify and
discuss several potential open problems that may
guide future research (Section 6). To conclude, we
advocate for the advancement of this field through
the development of more impartial, robust, expert
and unified LLM-based evaluators.

2 Formalization and Taxonomy

In this section, we first briefly formalize LLM-
based NLG Evaluation tasks. The objective of
NLG evaluation is to assess the candidate genera-

tions of a model across various dimensions, such
as fluency, consistency, etc. Recent advancements
in LLMs have significantly enhanced their capabil-
ities in context comprehension and the generation
of reasonable responses. Notably, contemporary
research has begun to reframe NLG evaluation as
a series of instruction-following tasks, leveraging
powerful capabilities of LLMs (Zhang et al., 2020;
Fu et al., 2023). To maintain generality, we for-
malize the existing evaluation framework for texts
generated by models as follows:

E:f(h,S,T)- (0

Here, h represents the hypothesis text (i.e. can-
didate generation to be evaluated), and f denotes
the evaluation function, which can be instantiated
by LLMs. The variable s denotes the input source
of the generation. This source might include the
source text or any supporting documents that pro-
vide background or framing for the generated con-
tent. For instance, in machine translation tasks,
c could be the sentence in the source language.
Lastly, r refers to a set of ground truth references
that serve as a benchmark for evaluation. These
references are crucial in tasks like text summariza-
tion, where the quality of the generated summary
is assessed by an annotated reference summary.

In this paper, we classify works in NLG evalu-
ation along three primary dimensions: evaluation
task, evaluation references and evaluation function.
These dimensions provide a comprehensive frame-
work for categorizing and understanding different
approaches within this domain.

Evaluation Task 7 : NLG encompasses a di-
verse range of tasks, such as Machine Translation
(MT) (Farhad et al., 2021; Bapna et al., 2019), Text
Summarization (TS) (Liu and Liu, 2021; Zhang
et al., 2023a), Dialogue Generation (DG) (Tao
et al., 2018; Kann et al., 2022), Story Generation
(SG) (Yang et al., 2022; Fan et al., 2018), Im-
age Caption (IC) (Tewel et al., 2022; Zhou et al.,
2022), Data-to-Text generation (D2T) (Lin et al.,
2023; Jing et al., 2023) and General Generation
(GE) (Wang et al., 2023g; Zheng et al., 2023), each
with its unique evaluation requirements and chal-
lenges. The specific nature of each task determines
the target evaluation aspects and scenarios. For
instance, in text summarization, the focus may be
on relevance to the source content, while in dia-
logue generation, the coherence of the response is
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Figure 2: Illustration of NLG evaluation functions: (a) generative-based and (b) matching-based methods.

crucial. Given these varied objectives, our taxon-
omy also extends to the lens of task-specific evalu-
ation. This categorization enables us to understand
how different evaluation methods perform across a
spectrum of NLG tasks, thus offering insights into
the strengths and limitations of existing evaluation
paradigms in distinct task contexts.

Evaluation References » : According to whether
the references are available, we divide the evalua-
tion scenarios into reference-based and reference-
free scenarios. In reference-based evaluation, the
generated text h is compared against a set of ground
truth references r. This approach is particularly
prevalent in tasks where the quality of the gener-
ated text can be objectively measured against estab-
lished standards. The comparison metrics might fo-
cus on aspects like accuracy, relevance, coherence,
and the degree of similarity to the references. Typi-
cal applications include text summarization, where
the generated summaries are evaluated against ref-
erence summaries, and machine translation, where
the translations are compared with standard trans-
lations. The reference-free approach, in contrast,
does not rely on any external references for eval-
uation. This method evaluates the generated text
h based on the intrinsic qualities or its alignment
with the provided source context s. Evaluation in
this context may focus on aspects such as fluency,
originality, relevance to the context, etc.

Evaluation Function f : Evaluation function
could be matching-based or generative-based on
the basis of different ways of utilizing LLMs. As
shown in Figure 2, matching-based methods mea-
sure the semantic equivalence between the refer-
ence and hypothesis or measure the proper degree
between the source text and hypothesis. Several
works measure the semantic equivalence between
the reference and hypothesis by using token-level

matching functions in distributed representation
space (Zhang et al., 2020; Zhao et al., 2019) or dis-
crete string space (Lin, 2004; Papineni et al., 2002).
Others focus on sequence-level, such as (Sellam
et al.,, 2020; Rei et al., 2020). In contrast,
generative-based methods include methods where
LLMs are employed to generate evaluation metrics
directly. These methods leverage the generative
capabilities of LLMs to assess the quality of gener-
ated text by designing instructions.

Scope of this paper: Recent matching-based
methods are based on a neural encoder to calcu-
late a score-specific aspect of evaluation. How-
ever, these methods often face challenges such as
limited interpretability, lower correlation with hu-
man judgments, and a restricted range of evaluated
aspects (Xu et al., 2023; Fu et al., 2023). Fortu-
nately, the emerging capabilities of LLMs open up
a wealth of possibilities for NLG evaluation. This
includes improved interpretability through CoT,
higher customization via instruction-following ca-
pabilities, and better alignment with human evalua-
tions through RLHF (Xu et al., 2023; Zheng et al.,
2023). Given the abundance of recent surveys
primarily focusing on matching-based evaluation
methods (refer to (Celikyilmaz et al., 2020; Sai
etal., 2022; Goyal et al., 2023) for comprehensive
summaries), our paper is dedicated to exploring
more burgeoning generative-based methods. Fig-
ure 3 presents our taxonomy of generative-based
evaluation. We classify relevant works into two
main categories: prompt-based and tuning-based
evaluation, depending on whether the LLM is tuned.
Further, we divide these methods into subcate-
gories: score-based, probability-based, likert-style,
pairwise comparison, ensemble, and advanced eval-
uation protocols, each distinguished by their eval-
uation form. These categories will be detailed in
Section 3.
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Figure 3: Taxonomy of research in NLG evaluation with large language models.

3 Generative Evaluation

Amidst the rapid evolution of LLMs, a burgeoning
body of research has directed its focus toward lever-
aging these models as evaluators for NLG tasks.
This attention is particularly rooted in the high-
capacity generative abilities of LLMs, leading to
the emergence of works employing them to pro-
duce quality evaluations of NLG text—a paradigm
we refer to as generative evaluation. This cate-
gory, broadly classified into prompt-based eval-
uation and tuning-based evaluation, hinges on
whether the parameters of LLM evaluators require
fine-tuning. Prompt-based evaluation typically in-
volves prompting robust base LLMs to assess gen-
erated text through meticulous prompt engineering.
On the other hand, tuning-based evaluation relies
on open-source LL.Ms that are specifically cali-
brated for NLG evaluation. Both approaches cater
to diverse evaluation protocols for measuring the
quality of the generated text.

Current methods consider different scoring pro-

tocols to judge the quality of generated hypothesis
text. Some endeavors deploy LLM evaluators to
yield continuous scalar scores that represent the
quality of individual generated texts—termed as
© score-based evaluation. Others calculate the
generation probability of generated texts based on
prompts, sources, or reference texts (optional) as
the evaluation metric, denoted as @ probability-
based evaluation. Further diversifying the land-
scape, certain works transform NLG evaluation
into a classification task by categorizing text qual-
ity into multiple levels using likert scales. In this
scenario, LLM evaluators assess the quality of
generated text by assigning it to a specific qual-
ity level—referred to as (3 likert-style evaluation.
Meanwhile, @ pairwise comparison methods in-
volve using LLM evaluators to compare the quality
of pairs of generated texts. Additionally, O en-
semble evaluation methods utilize multiple LLM
evaluators with different LLMs or prompts, orches-
trating communication among evaluators to yield



Prompt Type Prompt Output
Given the source document: [. . . ]

Score-based Given the model-generated text: [. .. ] Scores: 2
Please score the quality of the generated text from 1 (worst) to 5 (best)
Given the source document: [. .. ]

Likert-style Given the model-generated text: [. .. ] Yes
Is the generated text consistent with the source document? (Answer Yes or No)
Given the source document: [. .. ]

Pairwise Given the model-generated text 1: [. .. ] Text 1

And given the model-generated text 2: [. .. ]
Please answer which text is better-generated and more consistent.

Table 1: Illustration of different types of prompts.

final evaluation results. Finally, some recent stud-
ies explore ® advanced evaluation methods (that
consider fine-grained criteria or combine the capa-
bilities of chain-of-thought or in-context leaning)
with the goal of attaining more comprehensive and
nuanced evaluation results.

This section delves into a detailed exploration
of these two overarching categories of evaluation
methods, each accompanied by their respective
evaluation protocols. Table 2 provides a com-
prehensive overview of current prompt-based and
tuning-based evaluation methods. The table delin-
eates their respective adaptation tasks, backbone
models, scoring protocols, and evaluated aspects
for clarity and reference.

3.1 Prompt-based Evaluation

Prompt-based text evaluation stands at the forefront
of advancements in NLG, particularly leveraging
the capabilities of LLMs. In this method, the evalu-
ation process is intricately woven into the crafting
of prompts — specialized cues designed to guide
LLMs in assessing the quality and coherence of
generated text. More recently, the Eval4NLP work-
shop held a shared task on prompting LLMs as
explainable metrics (Leiter et al., 2023). Typically,
a prompt template serves as a structured frame-
work that encompasses instructions, aspects, cri-
teria, and desired output formats, providing a sys-
tematic guide for evaluating generated text. These
templates empower researchers and practitioners
to articulate precise evaluation requirements, en-
suring consistency and reproducibility in the as-
sessment process. By harnessing the prowess of
LLMs, prompt-based evaluation not only provides
a comprehensive understanding of NLG system
performance but also offers a nuanced approach to
extracting valuable insights.

Score Evaluation. An intuitive and widely em-
ployed protocol for utilizing LLM evaluators in text

evaluation involves prompting these evaluators to
generate a continuous score that reflects the quality
of the generated text. A concrete example of such
a prompt is illustrated in the first row of Table 1.
Pioneering this method, GEMBA (Kocmi and Fed-
ermann, 2023) proposed the use of LLM evaluators
to assign quality scores, ranging from 0 to 100,
to generate translations both with and without a
reference. GEMBA demonstrates the efficacy of
employing GPT-3.5 or larger LLMs for translation
quality evaluation, showcasing their capabilities
with simple zero-shot prompts. Building on this
foundation, Lin and Chen (2023) have extended
score evaluation methods to broader NLG evalu-
ation domains, aiming to enhance the alignment
between LLM evaluators and manual annotators.

Liu et al. (2023e) tailored LLM evaluators to as-
sess the quality of closed-end response generation,
characterized by unique and correct semantic refer-
ences. Their innovative approach involves prompt-
ing LL.Ms evaluators to generate explanatory judg-
ments for the generated responses, subsequently ex-
tracting numerical quality scores. Similarly, Wang
et al. (2023b) proposed a unified prompt applica-
ble across various NLG evaluation tasks, which
directly generates quality scores for the produced
texts across different evaluation aspects, both with
and without reference. Additionally, Jain et al.
(2023) employed LLM evaluators with in-context
examples to evaluate summarization tasks, gener-
ating numeric strings that effectively capture the
quality of summarization outputs. These diverse
applications underscore the versatility and adapt-
ability of score-based evaluation methods when har-
nessing LLM evaluators for comprehensive NLG
assessments.

Probability-based evaluation. Recognizing that
the quality of the generated text is often corre-
lated with the ease of generation by LLMs based
on source or reference text, some studies adopt a



Metric MT TS DG IC D2TSG GE REF LLMs Protocol Aspects
Prompt-based Evaluation
CON/COH/REL/FLU/
P P % % % %
BARTScore (Yuan et al., 2021) v v v v BART Prob INF/COV/ADE
CON/COH/REL/FLU/COV/ACC
P * ES
GPTScore (Fu et al., 2023) v v v GPT3 Prob MOQM/INF/FAC/INT/ENG/NAT
CON/COH/REL/FLU
_ i 5 * % % p » .
G-EVAL (Liu et al., 2023c) v v ChatGPT/GPT-4 Advanced /NAT/ENG/GRO
Embed Llama (Dreano et al., 2023) vooE * 0k % LlaMA-2 Score NONE
ICE (Jain et al., 2023) * ooy *ook Ok GPT-3 Score CON/COH/REL/FLU
GEMBA (Kocmi and Federmann, 2023) v~ * * * 00k ok ChatGPT Score/Likert NONE
LLM_eval (Chiang and Lee, 2023) * ook ok * oy * ChatGPT Likert GRAM/COH/REL/LIK
FairEval (Wang et al., 2023c) kR Ok ook ChatGPT/GPT-4 Pairwise NONE
AuPEL (Wang et al., 2023e) ® k% * oo PaLM-2 Pairwise PER/QUA/REL
DRPE (Wu et al., 2023a) ook F o xx GPT-3 Ensemble CON/COH/REL/FLU/INT/USE
ChatEval (Chan et al., 2023) *ooE *ooE ChatGPT/GPT-4 Ensemble NAT/COH/ENG/GRO
WideDeep (Zhang et al., 2023b) ook ook ChatGPT Ensemble COH/REL/HARM/ACC
GPT-4/GPT-3.5
1 * * * * *
PRD (Li et al., 2023c) v Vicuna/Claude/Bard Ensemble INF/COH
FACTSCORE (Min et al., 2023) * v ChatGPT Advanced FAC
EAprompt (Lu et al., 2023) vooE ok *ook X ChatGPT/text-davinci-003 ~ Advanced NONE
AUTOCALIBRATE (Liu et al., 2023f) * v * *ook K GPT-4 Likert CON/COH/REL/FLU/INF/NAT
ALLURE (Hasanbeig et al., 2023) * ooy *ooE GPT-4 Advanced CON/COH/FLU/REL
Tuning-based Evaluation
PRISM (Thompson and Post, 2020) VooE Rk ke ke ke Transformer Prob NONE
T5Score (Qin et al., 2022) Voo Rk ke T5 Prob NONE
TrueTeacher (Gekhman et al., 2023) * oy % * ook ok TS Likert CON
Roberta/T5/GPT2 .
® ok % x ok
Attscore (Yue et al., 2023) v LLaMA/Vicuna Likert CON
DEP/LIK/UND/FLE/INF/INQ
X-EVAL (Liu et al., 2023a) vV o oF FLAN-T5-large Likert INT/SPE/COR/SEM/COH/ENG
NAT/GRO/CON/REL/FLU
ACC/CLA/FEA/CRE/THO
- 1 P ES * ES ES * ES p 1 2% 1<
AUTO-J (Li et al., 2023a) LLaMA Likert/Pairwise STR/LAY/COM/INF
PERSE (Wang et al., 2023a) *ok o kw0 LLaMA Likert/PairwiseINT/ADA/SUR/CHA/END
PandalLM (Wang et al., 2023f) *ook ok ook LLaMA Pairwise CLA/COM/FOR/ADH
TIGERScore (Jiang et al., 2023) v v oF v v Y LLaMA Advanced COH/INF/ACC/COM
INSTRUCTSCORE (Xu et al., 2023) VooE Rk ke LLaMA Advanced NONE
Prometheus (Kim et al., 2023a) *ook Ok ook LLaMA-2 Likert/Pairwise NONE
CritiqueLLM (Ke et al., 2023) R *oowk ChatGLM Likert NONE

Table 2: Automatic metrics proposed (v') and adopted (*) for various NLG tasks. REF indicate the method is
source context-free. MT: Machine Translation, TS: Text Summarization, DG: Dialogue Generation, IC: Image
Captioning, D2T: Data-to-Text, SG: Story Generation, GE: General Generation. We adopted the evaluation aspects
for different tasks from Fu et al. (2023). Specifically, for each evaluation aspect, CON: consistency, COH: coherence,
REL: relevance, FLU: fluency, INF: informativeness, COV: semantic coverage, ADE: adequacy, NAT: naturalness,
ENG: engagement, GRO: groundness, GRAM: grammaticality, LIK: likability, PER: personalization, QUA: quality,
INT: interest, USE: usefulness, HARM: harmlessness, ACC: accuracy, FAC: factuality, ADA: adaptability, SUR:
surprise, CHA: character, END: ending, FEA: feasibility, CRE: creativity, THO: thoroughness, STR: structure,
LAY: layout, CLA: clarity, COM: comprehensiveness, FPR: formality, ADH: adherence, DEP: topic depth, UND:
understandability, FLE: flexibility, INQ: inquisitiveness, SPE: specificity, COR: correctness, SEM: semantic
appropriateness. NONE means that the method does not specify any aspects and gives an overall evaluation. The
detailed explanation of most evaluation aspect can be found in Fu et al. (2023).

unique perspective by framing the evaluation task
as a conditional generation task. In this context, the
generative likelihood of the produced text is calcu-
lated, serving as the score indicative of text quality,
as illustrated in the second row of Table 1. Yuan
et al. (2021) first leveraged BART (Lewis et al.,
2019) as an evaluator to compute the probability of
the generated text based on source or reference text

across diverse evaluation aspects in machine trans-
lation, text summarization, and data-to-text tasks.
Expanding on this methodology, Fu et al. (2023)
devised prompts that encompass task descriptions
and definitions of evaluation aspects, utilized to
instruct an LLM-based evaluator to calculate the
generation probability of generated text. In contrast
to the conventional use of generation probability as



a quality score, Jia et al. (2023) calculated the three
probability changes as the reference-free metric to
evaluate the faithfulness of the generated summary.
These changes include the transition from generat-
ing a summary with the source document to directly
generating a summary, altering the position of the
source and summary, and the shift from generating
a summary with the source document to generating
a summary with a specific piece of a prefix.

Likert-Style Evaluation. Inspired by the human
annotation process, several studies employ LLM
evaluators to assess the quality levels of generated
texts, where these evaluators produce ratings or
quality labels based on a likert-style scale (Bai
et al., 2023; Gao et al., 2023; Gilardi et al., 2023;
Huang et al., 2023; Zhao et al., 2023; Wu et al.,
2023b; Luo et al., 2023; Zheng et al., 2023; Zhuo,
2023; Sottana et al., 2023; Skopek et al., 2023).
A representative likert-style prompt is depicted in
the third line of Table 1. For instance, Chiang
and Lee (2023) provided LLM evaluators with the
same evaluation instructions as human annotators,
prompting them to rate the quality of generated
texts using a 5-point likert scale. Meanwhile, Gao
et al. (2023) instructed ChatGPT to rate model-
generated summarizations across multiple evalu-
ation aspects, such as relevance, faithfulness, flu-
ency, and coherence, using a scale ranging from
1 (worst) to 5 (best) based on the provided source
document. In a similar vein, Ostheimer et al. (2023)
designed multiple prompts, each guiding the LLM
evaluator to assess a specific evaluation aspect of
a text style transfer task. By comparing the trans-
ferred text with the source text, the LLM evaluator
generates a discrete scale ranging from 1 to 5 to
represent the quality of the transferred text. This ap-
proach exemplifies the adaptability of likert-style
prompts in capturing diverse dimensions of text
quality through LLM evaluations.

Yue et al. (2023) proposed to utilize LLM evalua-
tor to evaluate the attribution capabilities of the gen-
erative models which judges if the generated state-
ment is thoroughly supported by the referenced
source. This work designs three categories of qual-
ity labels, including attributable, extrapolatory, and
contradictory, and prompts the LLM evaluator with
explicit instructions that include definitions of la-
bels. Liu et al. (2023f) utilized LLMs to draft,
filter, and refine comprehensive evaluation criteria
as score instructions, which achieves more con-
sistent evaluation results with human annotators

when evaluating text summarization, data-to-text
generation and hallucination tasks.

Pairwise Evaluation. Compared with utilizing
LLM evaluators to individually evaluate the qual-
ity of generated texts through numerical scores or
likert-style rating, another way of using LLLM for
evaluation is to explicitly compare with other gen-
erated text and decide which one is superior (Bai
et al., 2023; Ji et al., 2023). A representative
prompt is shown in the last row of Table 1. Wang
et al. (2023c) utilized LLM evaluator to obtain eval-
uation result of two model-generated responses for
one given query. This method proposes multiple
evidence and balanced position calibration, and
seeks assistance from human annotators when the
quality of two texts is close to avoid the impact of
the order of response pairs in the prompt on eval-
uation results. Wang et al. (2023e) introduced a
reference-free personalized text generation evalua-
tion framework that prompts LLM evaluator to per-
form pairwise comparisons between the generated
text pairs in three essential aspects: personalization,
quality, and relevance of the generated text through
providing a detailed explanation of its judgment.

Ensemble Evaluation. As the actual evaluation
process often involves collaborative evaluation by
multiple human annotators, some works utilize mul-
tiple LLM evaluators with different base models
or prompts and allow them to evaluate the quality
of generated text from different perspectives, as
shown in Figure 5. Wu et al. (2023a) set multiple
roles for the LLM to evaluate the quality of the gen-
erated summary by comparing it with the reference
one on both subjective and objective dimensions.
This work generates dynamic role profiles accord-
ing to input texts and synthesizes the results of
multiple roles as the final evaluation result. Li et al.
(2023c¢) utilized multiple LLM evaluators to con-
duct a pairwise evaluation for the model-generated
responses by performing multiple rounds of dis-
cussions on the comparison results to reach a mu-
tual agreement on the pairwise scoring. Similarly,
Zhang et al. (2023b) proposed to set up LLM eval-
uators as multiple-layer neural network structures.
The bottom evaluators obtain the evaluation result
of model-generated responses from a specific eval-
uation perspective. The upper evaluators receive
all evaluation information from the previous layer
and discuss it with each other to obtain a more com-
prehensive evaluation result. Besides, Chan et al.



Given the source document: [..]

Given the model-generated text: [..]

Please perform fine-grained error analysis of
the generated text.

A/
Evaluator Error 1:
¥ Error severity: [Major/Minor]

Error location: [..]

Fine-grained Error explanation: [..]

EgalVELS Error 2:

¥ Error severity: [Major/Minor]
g b
Final e P H .

scores: [..]

Figure 4: A example of fine-grained evaluation inspired
by Jiang et al. (2023).

(2023) designed diverse communication strategies
with various role prompts during collaborative dis-
cussions to evaluate pairwise generated responses.

Advanced Evaluation. Some recent works in-
vestigate advanced evaluation techniques aimed
at achieving more thorough and nuanced assess-
ment outcomes by leveraging chain-of-thought, in-
context learning capabilities, fine-grained analy-
sis, etc. A representative fine-grained evaluation
method is shown in Figure 4. Liu et al. (2023c¢) uti-
lized LLMs with chain-of-thought (CoT) prompt-
ing and a form-filling paradigm to evaluate the
quality of generated texts across various NLG tasks.
Min et al. (2023) proposed a find-grained evalu-
ation schema that first extracts a series of atomic
facts from the LLM-generated long text, and then
utilizes LLM evaluator to validate each atomic fact
with the given knowledge source. Lu et al. (2023)
proposed a new prompting method called Error
Analysis Prompting (EAPrompt) that combines
CoT to prompt the LLM evaluator to analyze dif-
ferent types of pre-defined errors (e.g., major and
minor errors) in the generated translation based on
the given source text and reference translation, and
then measures the quality of a generated translation
with the previous error analysis. To enhance and
improve the robustness of LLM-based evaluators,
Hasanbeig et al. (2023) proposed ALLURE, a sys-
tematic protocol for auditing and improving LLM-
based evaluation with iterative in-context-learning.
Considering that the evaluation with a single or few
references may not accurately reflect the quality of
the model’s hypotheses, Tang et al. (2023) lever-
aged LLMs to paraphrase a single reference into
multiple high-quality ones in diverse expressions,
which enhances various evaluation methods on MT,
TS, and caption tasks. To further task advantages

Given the source document: [..]

Given the model-generated text 1: [..]

And given the model-generated text 2: [..]

We need you to compare quality of two texts.
There are other evaluators performing the same
task. You should discuss with them and make a
final decision.

Here is the discussion history: [..]

Please give your opinion.

[role 1] Evaluator 1
Output:
Text 1
Ensemble

Discuss

[role n] Evaluator n

Figure 5: A example of ensemble evaluation inspired
by Li et al. (2023c).

of the in-context learning capability of LLMs, Liu
et al. (2023f) proposed AUTOCALIBRATE to auto-
matically align and calibrate an LLM-based evalua-
tor through incorporating the mined and calibrated
rubrics into scoring instructions.

3.2 Tuning-based Evaluation

Recently, researchers increasingly turn their at-
tention towards fine-tuning open-source language
models (e.g., LLaMA), in lieu of traditional closed-
based LLMs (e.g., ChatGPT and GPT-4). This shift
is propelled by a thorough exploration of key per-
spectives, including the expenses associated with
API calls, the robustness of prompting, and the
pivotal consideration of domain adaptability.

In contrast to closed-based models that invari-
ably demand expensive API calls for each eval-
uation instance, the fine-tuning of smaller open-
source LL.Ms provides a cost-effective alternative.
This approach empowers researchers to evaluate
their models on specific tasks without incurring the
financial burden associated with extensive API us-
age. Additionally, the process of prompting LLMs
for NLG evaluation requires meticulous crafting of
prompts, with variations potentially resulting in sig-
nificant differences in outcomes. Furthermore, the
consideration of domain adaptability underscores
the evolving landscape of NLG evaluation. Fine-
tuning open-source LLMs affords researchers the
flexibility to tailor models to diverse domains, tran-
scending the limitations imposed by closed-based
models confined to specific niches.

Typically, tuning-based methods construct eval-
uation data manually (Zheng et al., 2023) or with
the assistance of advanced LLMs (e.g., GPT-4) (Xu
et al., 2024), followed by performing supervised
tuning. Similar to prompting-based evaluation,
tuning-based methods can also be categorized into



various types based on their scoring protocol, such
as likert-style evaluation, probability-based evalua-
tion and pairwise evaluation. In addition, based on
the output explanations in supervised fine-tuning,
these methods can be further divided into holistic
evaluation or error-oriented evaluation. We will
begin by introducing various types of scoring pro-
tocols and subsequently provide a summary of two
output explanations in the final advance evaluation.

Likert-Style Evaluation. Some works tune
LLMs to provide quality ratings or labels for gener-
ated texts. Gekhman et al. (2023) employed FLAN-
PalLM 540B (Chung et al., 2022) to annotate the
quality of real model-generated summaries and uti-
lized these annotated data as training data to tune a
light-weight LL.M (e.g., T5-11B) as a factual con-
sistency summary evaluator, which predicts “1" if
the summary demonstrates factual consistency and
“0" otherwise. Yue et al. (2023) reused and repur-
posed the existing fact-checking, NLI, and sum-
marization tasks datasets and obtained simulated
data from open-domain QA datasets to tune light-
weight LLMs for attribution evaluation, which gen-
erates attributable, extrapolatory or contradictory
labels for the generated answer with given query
and reference documents. Li et al. (2023a) cre-
ated a dataset containing multiple scenarios and
used GPT-4 (OpenAl, 2023) to generate evalua-
tion judgments for each scenario as supervision
signals to tune LLaMA as a generative evaluator,
which can output overall quality rating for indi-
vidual LLM-generated response in various sce-
narios. Wang et al. (2023a) repurposed existing
datasets with proper anonymization and new per-
sonalized labels to tune LLaMA2 (Touvron et al.,
2023) as a personalized story evaluation model
which provides personalized evaluation for gener-
ated texts through outputting a grade in [1, 10] and
detailed reviews. Kim et al. (2023a) prompted GPT-
4 to construct training data, including reference an-
swers and crafted diverse customized score rubrics,
and used them to tune LLaMA to evaluate model-
generated responses of given instruction, which
is generalized to realistic user demands. Ke et al.
(2023) instructed GPT-4 to collect referenced and
reference-free training data with dialogue-based
prompting, utilized to tune LLMs for evaluating
the alignment of model-generated texts with human
instructions through generating scores and expla-
nations. (Liu et al., 2023a) constructed a reference-
free instruction-tuning dataset tailored for multi-

aspect evaluation across summarization, dialogue
and data-to-text tasks. Considering that there is an
internal correlation between the evaluation aspects,
this work tuned with auxiliary aspects additionally
on diverse evaluation task forms. During inference,
this work combined auxiliary and target aspects
and predicted either the “Yes” or “No” label to
judge whether the generated text satisfied the target
aspect and compute the evaluation score.

Probability-based Evaluation. Some works
train generative LLMs to calculate the genera-
tion probability of generated texts to evaluate text
quality. For example, Thompson and Post (2020)
trained a transformer as a multilingual reference-
to-candidate paraphraser to obtain the generated
probability of model-generated translation based
on their reference texts. Qin et al. (2022) tuned
the T5 model in the generative and discriminative
fashion, and used the probability of generating a
text as the quality score.

Pairwise Evaluation. There are also some works
tuning LLMs for comparison between generated
text pairs. Wang et al. (2023f) collected response
pairs from LLMs and asked GPT-3.5 to generate
output judgments, utilized which to tune LLaMA-
7B to evaluate a pair of model-generated responses
with the given query, accompanied by a concise de-
scription of the evaluation procedure. Zheng et al.
(2023) performed fine-tuning on Vicuna using a hu-
man votes dataset from Chatbot Arena to pairwise
evaluate two answers with the given query.

Advanced Evaluation. Nearly all tuning-based
evaluators are trained to emulate evaluate behav-
ior (the score or explanations) produced by strong
closed models like GPT-4 or ChatGPT. In the con-
text of supervised fine-tuning, the majority of stud-
ies gravitate towards holistic evaluation (Li et al.,
2023a; Wang et al., 2023f,a; Kim et al., 2023a),
which involves a comprehensive assessment of the
generated content, providing an overarching expla-
nation for the assigned score. It takes into account a
diverse range of factors, including coherence, rele-
vance, and fluency, to offer a holistic understanding
of the quality of the hypothesis text. Besides, some
studies explore error-oriented evaluation which
focused on examining and explaining the specific
errors in the hypothesis text, offering insights into
why a particular score is derived. This category
delves into the fine-grained aspects of generated
content to identify and justify evaluation outcomes.



For instance, Yue et al. (2023) first defined differ-
ent types of attribution errors, and then explored
prompting LLMs or fine-tuning smaller LLMs on
simulated and repurposed data from related tasks
such as question answering (QA), fact-checking,
natural language inference (NLI), and summariza-
tion. Xu et al. (2023) utilized GPT-4 to construct
fine-grained analysis data to tune LLaMA to gen-
erate error analysis for generated text compared
with reference text, after which this work utilized
real model-generated response-reference pairs to
refine and self-train evaluator. Furthermore, Jiang
et al. (2023) sampled data from diverse text gen-
eration datasets, including summarization, transla-
tion and data2text, whose system outputs included
real-world system output and GPT-4 synthesis, and
prompted GPT-4 to curate error analysis to tune
LLaMA for fine-grained evaluation.

4 Benchmarks and Tasks

LLM-based evaluators have found application
across various NLG tasks. Simultaneously, a mul-
titude of existing and recently introduced meta-
evaluation benchmarks serve the purpose of validat-
ing the efficacy of these evaluators. These bench-
marks incorporate human annotations gauging the
quality of generated text, and evaluating the de-
gree of concurrence between automatic evaluators
and human preferences. Categorized based on the
tasks involved, these benchmarks can be classified
into single-scenario examples, such as machine
translation and summarization, as well as multi-
scenario benchmarks. This section will provide an
overview of these NLG tasks and their associated
meta-evaluation benchmarks.

Machine Translation (MT). MT task is centered
around converting a sentence or document from a
source language into a target language while pre-
serving the same semantic meaning. The Annual
WMT Metrics Shared tasks (Mathur et al., 2020;
Freitag et al., 2021b, 2022) annually introduce a
set of benchmarks encompassing model-generated
translations, source text, reference text, and human
judgment across multiple languages, such as En-
glish to German, English to Russian, among others.
These benchmarks provide a valuable resource for
evaluating the correlation between automatic eval-
uators and human judgment. Simultaneously, Fre-
itag et al. (2021a) curated and annotated outputs
from 10 translated systems for both English-to-
German and Chinese-to-English translation pairs

in the WMT 2020 news translation task (Barrault
et al., 2020). Employing professionals and crowd
workers as annotators, they assigned scalar ratings
on a 7-point scale to each translation, utilizing
multi-dimensional quality metrics scoring.

Text Summarizing (TS). TS involves generat-
ing a concise and coherent summary of a given
piece of text while capturing its essential mean-
ing. There are many meta-evaluation benchmarks
are proposed (Grusky et al., 2018; Gliwa et al.,
2019; Bhandari et al., 2020; Wang et al., 2020b;
Pagnoni et al., 2021; Laban et al., 2022; Skopek
et al., 2023). One of the widely used benchmarks is
SummEval (Fabbri et al., 2021b). This benchmark
includes summaries generated by 16 models from
100 source news articles randomly sampled from
the CNN/DailyMail test set (Hermann et al., 2015),
and each summary underwent annotation by five
separate crowd-sourced workers and three indepen-
dent experts on a Likert scale from 1 to 5 along
four dimensions: coherence, consistency, fluency
and relevance. In addition, Shen and Wan (2023)
presented a meta-evaluation benchmark for opinion
summarization tasks, including human judgments
and outputs from 14 opinion summarization mod-
els over four dimensions: aspect relevance, self-
coherence, sentiment consistency and readability,
where opinion summarization task focuses on ex-
tracting opinions from a large number of reviews.

Dialogue Generation (DG). DG task aims to
generate human-like responses in the context of
a conversation, including open-domain and task-
oriented dialogue generation tasks. The model-
generated dialogue should be natural and interest-
ing, while also being consistent with the context.
Mehri and Eskenazi (2020b) performed human an-
notations across two open-domain dialog corpora
Topical-Chat (Gopalakrishnan et al., 2019) and Per-
sonaChat (Zhang et al., 2018). For each dataset, 60
dialogue contexts are sampled with six responses
per context for Topical-Chat and five responses
for PersonaChat, where each response is generated
from dialogue systems and human outputs. Each
response is scored from 6 dimensions including
naturalness, coherence, engagingness, grounded-
ness, understandability and overall quality. Mehri
and Eskenazi (2020a) sampled and annotated a sub-
set from a set of conversations between a human
and another human or two open-domain dialog sys-
tems (Adiwardana et al., 2020). Turn-level and



dialog-level human judgment are performed, re-
spectively, for each sampled conversation on eigh-
teen dialog quality dimensions.

Image Caption (IC). The task involves gen-
erating textual descriptions or captions for im-
ages. Meta-evaluation benchmarks of image cap-
tion contain human annotations for image-textual
pairs (Aditya et al., 2015; Vedantam et al., 2015).
For example, the commonly used Flickr 8k dataset
(Hodosh et al., 2013) collects two sets of human
annotations. One set includes 17K expert judg-
ments annotation, which asks human experts to
rate the image-caption pairs with scores ranging
from 1 to 4, and another set includes 145K binary
quality judgments gathered from CrowdFlower for
each image-caption pair, which decide whether a
caption describes the corresponding image or not.
Considering some NLG evaluators can only handle
textual modal information, some meta-evaluation
benchmarks also include a reference caption for
each image. Cui et al. (2018) collected human
judgments for twelve submission entries from the
2015 COCO Captioning Challenge on the COCO
validation set (Vinyals et al., 2016), where each
system generates one caption for each image, and
each image has five reference captions.

Data-to-Text (D2T). D2T task involves gener-
ating fluent and factual human-readable text from
structured data. Mairesse et al. (2010) proposed
BAGEL, which contains 202 samples about restau-
rants in Cambridge, where each sample includes
structured information context with corresponding
generated texts, references and human judgments.
Wen et al. (2015) further proposed SFRES and
SFHOT, which contain 581 samples of restaurants
and 398 samples of hotels in San Francisco, re-
spectively. The human judgments in these bench-
marks focus on informativeness, naturalness and
overall quality of generated texts. WebNLG+
Shared Tasks (Castro Ferreira et al., 2020) also
publish WebNLG dataset annually, which con-
tains Wikipedia triples with corresponding human-
annotated texts.

Story Generation (SG). The task involves cre-
ating coherent and contextually relevant narratives
or stories with the given beginning of a story or
writing requirement. Most meta-evaluation bench-
marks of story generation always contain stories
and corresponding manually annotated judgment
scores (Guan et al., 2021; Chen et al., 2022). Be-

sides, Wang et al. (2023a) created two personalized
story evaluation benchmarks denoted as Per-MPST
and Per-DOC to evaluate the quality of generated
stories with a given evaluator persona. This work
repurposes existing datasets (Kar et al., 2018; Yang
et al., 2023b) through anonymizing and summa-
rizing. Both them view multiple reviews by the
same reviewer as an implicit persona preference
and provide personalized human judgements for
each generated story.

General Generation (GE). As LLMs have been
increasingly used in general NLG tasks, such as
math, reason, dialogue and open-ended QA, etc.,
LLM evaluators have proposed to effectively evalu-
ate the quality of the model-generated texts across
multiple scenario (Kim et al., 2023a; Ke et al.,
2023). Accordingly, there are many multi-scenario
meta-evaluation benchmarks are proposed (Wang
etal.,2023c; Zheng et al., 2023; Wang et al., 2023d;
Yue et al., 2023). Typically, Zhang et al. (2023b)
sampled 2,553 evaluation samples, including in-
structions and model-generated response pairs with
corresponding human-annotated preference labels
from multiple task datasets such as dialogue, open-
domain QA, and programming. Further, Zeng et al.
(2023) proposed a benchmark that includes 419
evaluation samples and can be categorized into
two parts: NATURAL and ADVERSARIAL sets.
The former collects and filters instances from exist-
ing human-preference benchmarks to ensure that
each instance has an objective preference. The lat-
ter includes the adversarial instances created by
authors that go against instruction but have good
superficial qualities and are challenging for evalu-
ators. Liu et al. (2023b) sampled 400 evaluation
instances, including Chinese queries, correspond-
ing references and model-generated answers from
ALIGNBENCH across extensive task categories,
such as open-ended questions, writing ability, log-
ical reasoning, etc. Then the authors assigned hu-
man annotators to judge ratings for each instance
to verify the agreement of LLM-based evaluators
with human judging.

5 Comparison with Traditional
Evaluators

Qualitative Comparison Traditional evaluation
metrics (e.g., BLEU (Papineni et al., 2002) and
ROUGE) focus on exacting n-gram matches, which
penalizes semantically correct but lexically differ-
ent hypotheses. These methods are simple and fast



. SummEval Topical-Chat WMT22
Metrics Sup
COH CON FLU REL Avg NAT COH ENG GRO Avg En-De En-Ru Zh-Eu
Traditional Metrics (Word Overlap)
ROUGE-1 0.167 0.160 0.115 0.326 0.192 0.158 0.206 0.319 0.264 0.233 - - -
ROUGE-2 0.184 0.187 0.159 0.290 0.205 0.168 0.247 0337 0311 0.266 - - -
ROUGE-L 0.128 0.115 0.105 0.311 0.165 0.145 0.205 0306 0.293 0.237 - - -
BLEU - - - - - 0.175 0.235 0316 0310 0259 0.169 0.140 0.145
BERT-based Metrics
BERTScore 0284 0.110 0.193 0.312 0225 0.209 0.233 0335 0317 0273 0.232 0.192 0316
BLEURT v - - - - - - - - - - 0.344  0.359 0.361
BARTScore v 0448 0.382 0.356 0356 0.385 -0.053 -0.079 -0.084 -0.197 -0.103 - - 0.220
UniTE v - - - - - - - - - - 0.369 0378 0.357
UniEval v 0575 0446 0449 0426 0474 0450 0.616 0.615 0.590 0.568 - - -
LLM-based Metrics

GPTScore 0.434 0.449 0.403 0.381 0417 - - - - - - 0.187
CHATGPT (DA) 0451 0432 0.380 0439 0425 0474 0.527 0.599 0.576 0544 0306 0332 0.371
G-Eval 0.582 0.507 0.455 0.547 0.514 0.607 0.590 0.605 0.536 0.590 - - -
Embed Llama - - - - - - - - - 0.400 0.227 0.217
X-Eval v 0530 0428 0461 0500 0.480 0478 0.622 0.593 0.728 0.605 - - -

Table 3: Performance of traditional and LLM-based metrics on Text Summarizing (SummEval), Dialogue Gen-
eration (Topical-Chat) and Machine Translation (WMT22) tasks. We demonstrate the sample-level Spearman
correlations on SummEval and Topical-Chat benchmarks and the segment-level Kendall-Tau correlations on WMT22
benchmarks respectively. Sup indicates the metric is supervised. The specific representation of the evaluation
aspects (COH/CON/FLU/REL/NAT/ENG/GRO) is shown in Table 2.

but not robust to paraphrasing. BERTScore (Zhang
et al., 2020) measures quality through semantic
similarity based on BERT contextual embeddings,
effectively handling paraphrases and synonyms.
However, such matching-based evaluators depend
on the quality of the pre-trained embeddings, may
struggle with very fine-grained semantic distinc-
tions, and neglect the overall semantics of the hy-
potheses and references. Additionally, neither met-
ric accounts for fluency or readability during evalu-
ation and both still rely on reference texts.

In contrast, LLMs have a strong capability for
language understanding and generation, which sup-
ports evaluating quality without needing references.
They can adapt to various domains and languages,
making them suitable for a wide range of NLG
tasks without requiring task-specific feature engi-
neering. LLMs also provide more nuanced eval-
uation criteria beyond traditional metrics, such as
semantic coherence, fluency and possible explana-
tions. However, LLM-based methods are compu-
tationally more intensive due to their vast architec-
tures. Additionally, prompting LLMs for NLG eval-
uation requires careful crafting of prompts. Varia-
tions in these prompts can lead to substantial differ-
ences in evaluation outcomes, as indicated in (Gao
et al., 2023). Section 6 summarizes more open
problems of LLM-based metrics.

Performance Comparison Table 3 summarizes
the performance of both traditional word-overlap
metrics, BERT-based metrics and recent LLM-
based metrics on representative benchmarks such
as SummEval, WMT, and Topical-Chat. We can
easy to observe that the latter two metrics generally
perform better than word-overlap metrics. Despite
not being fine-tuned, the most competitive LL.M-
based methods (e.g., G-Eval for summarization and
CHATGPT(DA) for machine translation) generally
achieve a higher correlation with all traditional met-
rics, whether for unsupervised or fine-tuned meth-
ods. These results reveal the strong capability of
LLMs in language understanding, contextual anal-
ysis, coherence checking, and fluency assessment
of generated text. Among the three tasks, the per-
formance gap between LLM-based evaluators and
traditional evaluators is not significant in the ma-
chine translation task. This phenomenon might
be due to the limitations of LLM-based models in
cross-lingual understanding. Additionally, accord-
ing to the results of last row in the table, we can ob-
serve that the performance of different LLM-based
metrics varies significantly, which implies their sen-
sitivity to prompt crafting. In contrast, traditional
unsupervised methods like ROUGE, BLEU, and
BERTScore are more robust, although their overall
performance is relatively worse.



Methods Backbone TS DG
BLEU - 977.31 2344.16
ROUGE - 446.36  2379.24
BERTScore BERT 37.64 42.37
ChatGPT(DA)  ChatGPT 1.94 1.87
G-Eval GPT-4 1.51 1.40
TIGERScore Llama 2.67 3.72

Table 4: Efficiency Comparison. We report the aver-
age number of texts evaluated per second for different
metrics.

Efficiency Comparison Table 4 presents the av-
erage number of texts evaluated per second for
different metrics in the SummEval (TS task) and
Topical-chat (DG task) benchmarks. This compar-
ison highlights the efficiency differences between
traditional metrics and LLLM-based metrics. Our
tests were conducted on an NVIDIA A40 GPU.
The results show that efficiency generally corre-
lates with model size and traditional word-overlap
metrics (e.g., BLEU and ROUGE) are significantly
faster than other metrics. Specifically, LLM-based
evaluators are about 200 to 400 times slower than
traditional word-overlap metrics. However, their
efficiency can be improved with advanced LM in-
ference tools such as vVLLM!. While LLM-based
evaluators are suitable for offline evaluation, they
may not be feasible for online evaluation.

6 Challenges and Open Problems

This paper provides a comprehensive review of re-
cent natural language generation evaluations based
on LLMs, encompassing both prompt-based and
tuning-based evaluation approaches. Despite sig-
nificant efforts and notable achievements across
various text generation benchmarks, several chal-
lenges in the field persist.

Bias of LLM-based Evaluators. The use of
LLMs as evaluators inherently cast the text eval-
uation as a generation task. Consequently, when
LLMs are employed in this evaluator role, they
may carry over biases intrinsic to their function
as generators. These biases may include social
biases, such as stereotypes related to specific demo-
graphic identities (e.g., race, gender, religion, cul-
ture, and ideology) (Sheng et al., 2021). In addition
to these general biases, LLMs-as-evaluators are
subject to specific biases unique to their evaluative
role. These include order bias, where preference

! https://github.com/v1l1lm-project/vllm

is given to options based on their sequence (Zheng
et al., 2023; Wang et al., 2023c; Koo et al., 2023);
egocentric bias, where a tendency exists to favor
texts generated by the same LLM (Liu et al., 2023d;
Koo et al., 2023); and length bias, which leads to a
preference for longer or shorter texts (Zheng et al.,
2023; Koo et al., 2023). Therefore, in leveraging
LLMs for evaluation purposes, it is crucial to cali-
brate both the inherent biases of LLMs as well as
those biases specific to their function as evaluators.
This dual consideration is essential for the effective
and fair use of LLMs in NLG evaluation tasks.

Robustness of LLM-based Evaluators. Most
LLMs-based evaluation methods rely heavily on
prompt engineering. However, the process of
prompting LLMs for NLG evaluation demands
careful and meticulous crafting of prompts. The
variations in these prompts can potentially lead to
substantial differences in the outcomes of the evalu-
ation process. Some works have investigated the ro-
bustness of LLM-based evaluators by constructing
adversarial datasets. These datasets are designed to
test the evaluators’ resilience by introducing false
or off-topic information, thereby examining the im-
pact of such distortions on their evaluative accuracy.
Their findings shed light on the significant room
for improvement in the robustness of LLM-based
evaluators. For instance, Liu et al. (2023e) de-
veloped two adversarial meta-evaluation datasets
for dialogue generation with adversarial instances
inconsistent with gold references. Koo et al. (2023)
introduced a benchmark containing two adversarial
aspects: Distraction and Bandwagon Effect, which
involve appending irrelevant information or fab-
ricated statistics, such as a misleading majority
preference, to the initial instructions. The results
suggest a general lack of robustness in many LLMs
under such adversarial conditions. The robustness
of LLM-based evaluators emerges as a critical area
of exploration, underscoring the need for further
research to enhance their robustness in the face of
challenging or misleading inputs.

Which came first, the chicken or the egg?
LLM-based evaluators frequently utilize GPT-
4 (Liu et al., 2023c; Xu et al., 2023; Zheng et al.,
2023), owing to its status as one of the most ad-
vanced LLM (OpenAl, 2023). However, relying
on GPT-4 for evaluation might lead to biased or
skewed results, especially when evaluating out-
puts generated by itself or an equally powerful
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model (Bai et al., 2023; Zheng et al., 2023). The
impartiality of such evaluations is questionable if
the evaluator (LLM-as-evaluator) possesses capa-
bilities comparable to the model being evaluated
(LLM-as-generator). This is compounded by the
egocentric bias of LLMs, including GPT-4, to ex-
hibit biases like favoring their own generated re-
sponses (Bai et al., 2023). This scenario mirrors
the chicken-and-egg dilemma: an LL.M-based eval-
uator relies on a more powerful LLM, yet the de-
velopment of a more powerful LLM depends on
having a robust evaluator. To address this dilemma,
a broader spectrum of evaluation methods is nec-
essary, involving various benchmark (Srivastava
et al., 2022; Liang et al., 2022), evaluation crite-
ria (Sellam et al., 2020), and human feedback (Xu
et al., 2023; Ouyang et al., 2022) to ensure more
balanced and comprehensive assessments.

Domain-Specific Evaluation. LLMs have been
prevalent across various domains, such as law (Cui
et al., 2023a), medicine (Singhal et al., 2023), fi-
nance (Yang et al., 2023a), etc. However, most
LLMs employed as evaluators are designed for gen-
eral domains and are not specifically tailored to any
particular field. This lack of specialization poses
significant challenges. On one hand, these LLMs
often lack the requisite domain-specific knowledge,
making it difficult for them to accurately assess the
correctness of content within specialized fields. On
the other hand, the evaluation prompts need to be
meticulously designed for different domains. This
may involve tailoring the aspects of evaluation rel-
evant to each field. For example, while evaluating
legal documents, aspects such as legal accuracy and
adherence to the judicial system are crucial (Cui
et al., 2023b), which differ significantly from the
aspects relevant in medical or financial texts. There-
fore, to enhance the efficacy of LLMs as evaluators
in specialized domains, there’s a pressing need to
develop models that are not only domain-aware but
also equipped with the capability to evaluate based
on domain-specific criteria.

Unified Evaluation. LLMs have been expanded
w.r.t their broad capabilities beyond traditional
single-task focuses, encompassing complex instruc-
tions like coding and open-ended real-world re-
quirements (OpenAl, 2023; Significant Gravitas).
Consequently, there is an increasing demand for
more comprehensive and flexible evaluation meth-
ods. However, traditional evaluation methods and

most current LLM-based evaluators are limited to
constrained tasks and evaluation aspects (cf. Ta-
ble 2). Some promising attempts have been made
in this direction. For instance, MT-Bench (Zheng
et al., 2023) uses GPT-4 as an evaluator across mul-
tiple domains for multi-turn questions. Yet, this
is too confined to a few evaluation aspects and
limits dialogue to two turns only. Another model,
Auto-J (Li et al., 2023b), approaches from a data
construction perspective, training a 13B LLM on
user queries and GPT-4 generated responses across
a wide range of real-world scenarios. It accom-
modates diverse evaluation protocols and has been
validated in 58 different scenarios, even outper-
forming many proprietary LLMs. In light of in-
creasingly complex user queries, we advocate that
developing a more unified and contemporaneous
evaluation protocol is a promising direction. Addi-
tionally, constructing high-quality, comprehensive
datasets to train unified models holds great poten-
tial. Such advancements could significantly con-
tribute to more effective and universal evaluations
of LLMs.

7 Conclusion

In this paper, we have meticulously surveyed the
role of LLMs in the evaluation of NLG. Our com-
prehensive taxonomy classifies works along three
primary dimensions: evaluation function, evalua-
tion references and evaluation task. This frame-
work enabled us to systematically categorize and
understand LL.M-based evaluation methodologies.
We delved into various LLM-based approaches,
scrutinizing their strengths and comparing their dif-
ferences. Additionally, we summarized prevalent
meta-evaluation benchmarks for NLG evaluation.
Throughout our study, we highlighted both the ad-
vancements and the prevailing challenges in this
rapidly evolving field. While LLMs offer ground-
breaking potential in evaluating NLG outputs, there
still remain unresolved issues that require attention,
including bias, robustness, the integration of hy-
brid evaluation methods, and the need for domain-
specific and unified evaluation within LLM-based
evaluators. We anticipate that addressing these
challenges will pave the way for more general, ef-
fective, and reliable NLG evaluation techniques.
Such advancements would contribute significantly
to the progression of both NLG evaluation and the
broader application of LLMs.
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